Strategies for fast and low-dose laboratory-based phase contrast tomography for microstructural scaffold analysis in tissue engineering
نویسندگان
چکیده
The application of x-ray phase contrast computed tomography (PCT) to the field of tissue engineering is discussed. Specific focus is on the edge illumination PCT method, which can be adapted to weakly coherent x-ray sources, permitting PCT imaging in standard (non-synchrotron) laboratory environments. The method was applied to a prominent research topic in tissue engineering, namely the development of effective and reliable decellularization protocols to derive scaffolds from native tissue. Results show that edge illumination PCT provides sufficient image quality to evaluate the microstructural integrity of scaffolds and, thus, to assess the performance of the used decellularization technique. In order to highlight that edge illumination PCT can ultimately comply with demands on a high specimen throughput and low doses of radiation, recently developed strategies for scan time and dose reduction are discussed.
منابع مشابه
Data of low-dose phase-based X-ray imaging for in situ soft tissue engineering assessments.
This article presents the data of using three phase-based X-ray imaging techniques to characterize biomaterial scaffold and soft tissues in situ, as reported in our study "Low-dose phase-based X-ray imaging techniques for in situ soft tissue engineering assessments" [1]. The examined parameters include the radiation dose, scan time, and image quality, which are all critical to longitudinal in s...
متن کاملApplication of Different methods for Reducing Radiation Dose to Breast during MDCT
The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be tak...
متن کاملX-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is ...
متن کاملComparing Behavior of Chondrocyte Cells on Different Polyhydroxybutyrate Scaffold Structure for Cartilage Tissue Engineering
Introduction: As the ability to repair cartilage tissue in body is limited, finding a suitable method for cartilage regeneration has gained the attention of many scholars. For this purpose, scaffold structure and morphology, along with cell culture on it, can be a novel method to treat cartilage injuries, osteoarthritis. Methods: In this study, polyhydroxybutyrate (PHB) is selected as the scaf...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کامل